Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Int Immunopharmacol ; 130: 111638, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38373387

RESUMO

L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.


Assuntos
Arginina , Mastite , MicroRNAs , Infecções Estreptocócicas , Animais , Feminino , Humanos , Camundongos , Arginina/metabolismo , Inflamação/metabolismo , MicroRNAs/genética , Infecções Estreptocócicas/metabolismo , Streptococcus/fisiologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Mastite/imunologia , Mastite/metabolismo
2.
Sci Rep ; 12(1): 1367, 2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35079053

RESUMO

Lactational mastitis is an excellent target to study possible interactions between HMOs, immune factors and milk microbiota due to the infectious and inflammatory nature of this condition. In this work, microbiological, immunological and HMO profiles of milk samples from women with (MW) or without (HW) mastitis were compared. Secretor status in women (based on HMO profile) was not associated to mastitis. DFLNH, LNFP II and LSTb concentrations in milk were higher in samples from HW than from MW among Secretor women. Milk from HW was characterized by a low bacterial load (dominated by Staphylococcus epidermidis and streptococci), high prevalence of IL10 and IL13, and low sialylated HMO concentration. In contrast, high levels of staphylococci, streptococci, IFNγ and IL12 characterized milk from MW. A comparison between subacute (SAM) and acute (AM) mastitis cases revealed differences related to the etiological agent (S. epidermidis in SAM; Staphylococcus aureus in AM), milk immunological profile (high content of IL10 and IL13 in SAM and IL2 in AM) and milk HMOs profile (high content of 3FL in SAM and of LNT, LNnT, and LSTc in AM). These results suggest that microbiological, immunological and HMOs profiles of milk are related to mammary health of women.


Assuntos
Mastite , Leite Humano , Oligossacarídeos/imunologia , Staphylococcus epidermidis/imunologia , Feminino , Humanos , Mastite/imunologia , Mastite/microbiologia , Microbiota , Leite Humano/imunologia , Leite Humano/microbiologia
3.
Front Immunol ; 12: 770822, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858427

RESUMO

Cow mastitis, which significantly lowers milk quality, is mainly caused by pathogenic bacteria such as E. coli. Previous studies have suggested that lactic acid bacteria can have antagonistic effects on pathogenic bacteria that cause mastitis. In the current study, we evaluated the in vitro and in vivo alleviative effects of L. plantarum KLDS 1.0344 in mastitis treatment. In vitro antibacterial experiments were performed using bovine mammary epithelial cell (bMEC), followed by in vivo studies involving mastitis mouse models. In vitro results indicate that lactic acid was the primary substance inhibiting the E. coli pathogen. Meanwhile, treatment with L. plantarum KLDS 1.0344 can reduce cytokines' mRNA expression levels in the inflammatory response of bMEC induced by LPS. In vivo, the use of this strain reduced the secretion of inflammatory factors IL-6, IL-1ß, and TNF-α, and decreased the activity of myeloperoxidase (MPO), and inhibited the secretion of p-p65 and p-IκBα. These results indicate that L. plantarum KLDS 1.0344 pretreatment can reduce the expression of inflammatory factors by inhibiting the activation of NF-κB signaling pathway, thus exerting prevent the occurrence of inflammation in vivo. Our findings show that L. plantarum KLDS 1.0344 has excellent properties as an alternative to antibiotics and can be developed into lactic acid bacteria preparation to prevent mastitis disease.


Assuntos
Escherichia coli/imunologia , Lactobacillus plantarum/imunologia , Glândulas Mamárias Animais/imunologia , Mastite/imunologia , Animais , Antibiose/imunologia , Bovinos , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Lactobacillus plantarum/fisiologia , Lipopolissacarídeos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite/induzido quimicamente , Mastite/microbiologia , Camundongos Endogâmicos BALB C , NF-kappa B/imunologia , NF-kappa B/metabolismo , Transdução de Sinais/imunologia
4.
Oxid Med Cell Longev ; 2021: 5048375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938382

RESUMO

Mastitis is mainly induced by gram-negative bacterial infections, causing devastating economic losses to the global cattle industry. Both selenium (Se) and taurine (Tau) exhibit multiple biological effects, including reducing inflammation. However, no studies have reported the protective effect of the combined use of Se and Tau against mastitis, and the underlying mechanisms remain unclear. In this study, lipopolysaccharide (LPS), the vital virulence factor of gram-negative bacteria, was used to construct the in vivo and vitro mastitis models. The results of in vivo model showed that Se and Tau combination was more effective than either substance alone in reducing tissue hyperemia, edema, and neutrophil infiltration in the mammary acinar cavity, improving the blood-milk barrier in LPS-induced mice mastitis, and decreasing the expression of proinflammatory factors and the activity of MPO. Moreover, Se and Tau combination significantly increased the levels of LPS-induced reduction in PI3K/Akt/mTOR, but the expressions of TLRs and NLRP3 were not significantly changed in the mammary tissue. In the in vitro experiments, the effects of Se and Tau combination or alone on inflammatory factors, inflammatory mediators, MPO activity, and blood-milk barrier were consistent with those in vivo. The Se and Tau combination has also been found to increase the survival rate of BMECs compared with each substance alone via promoting cellular proliferation and inhibiting apoptosis. Also, it has been confirmed that this combination could restore the LPS-induced inhibition in the PI3K/Akt/mTOR signaling pathway. Inhibition of mTOR by Rapamycin counteracted the combined protection of SeMet and Tau against LPS-induced inflammatory damage, the inhibition of PI3K by LY294002 blocked the activation of mTOR, and the accumulation of ROS by the ROS agonist blocked the activation of PI3K. In conclusion, these findings suggested that Se and Tau combination was better than either substance alone in protecting LPS-induced mammary inflammatory lesions by upregulating the PI3K/Akt/mTOR signaling pathway.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Taurina/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Bovinos , Quimioterapia Combinada , Feminino , Sequestradores de Radicais Livres , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Mastite/induzido quimicamente , Mastite/imunologia , Mastite/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943933

RESUMO

Escherichia coli and Staphylococcus aureus are major mastitis causing pathogens in dairy cattle but elicit distinct immune and an inflammatory response in the udder. However, the host determinants responsible for this difference remains largely unknown. Our initial studies focused on the global transcriptomic response of primary bovine mammary epithelial cells (pbMECs) to heat-killed E. coli and S. aureus. RNA-sequencing transcriptome analysis demonstrates a significant difference in expression profiles induced by E. coli compared with S. aureus. A major differential response was the activation of innate immune response by E. coli, but not by S. aureus. Interestingly, E. coli stimulation increased transcript abundance of several genes downstream of Nrf2 (nuclear factor erythroid 2-related factor 2) that were enriched in gene sets with a focus on metabolism and immune system. However, none of these genes was dysregulated by S. aureus. Western blot analysis confirms that S. aureus impairs Nrf2 activation as compared to E. coli. Using Nrf2-knockdown cells we demonstrate that Nrf2 is necessary for bpMECs to mount an effective innate defensive response. In support of this notion, nuclear Nrf2 overexpression augmented S. aureus-stimulated inflammatory response. We also show that, unlike E. coli, S. aureus disrupts the non-canonical p62/SQSTM1-Keap1 pathway responsible for Nrf2 activation through inhibiting p62/SQSTM1 phosphorylation at S349. Collectively, our findings provide important insights into the contribution of the Nrf2 pathway to the pathogen-species specific immune response in bovine mammary epithelial cells and raise a possibility that impairment of Nrf2 activation contributes to, at least in part, the weak inflammatory response in S. aureus mastitis.


Assuntos
Imunidade Inata/genética , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Mastite/genética , Fator 2 Relacionado a NF-E2/genética , Proteína Sequestossoma-1/genética , Animais , Bovinos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Escherichia coli/imunologia , Escherichia coli/patogenicidade , Feminino , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Mastite/imunologia , Mastite/microbiologia , Mastite/patologia , Staphylococcus aureus/imunologia , Staphylococcus aureus/patogenicidade
6.
Int Immunopharmacol ; 100: 108079, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34455255

RESUMO

Mastitis is an inflammation of mammary gland, which directly affects the milk production performance and causes huge economic losses in the dairy industry. During mastitis, the blood-milk barrier (BMB) loses its integrity and aggravates the severity of mastitis. Exogenous DNase I has been exerted protective effects in different model of tissue injury. Here, we designed a study to investigate the effects of DNase I on inflammation and BMB in a mice model of Staphylococcus aureus-induced mastitis. In the model, we found that DNase I treatment significantly alleviated the inflammatory response through decrease of inflammatory cells in mammary alveoli, MPO activity and cytokines in mammary gland. Furthermore, immunofluorescent staining and western blotting demonstrated that exogenous DNase I obviously reduced BMB permeability and changed the expression of tight junction proteins to support the re-establishment of the barrier integrity. Mechanismly, DNase I treatment inhibited NF-κB and enhanced AKT signaling pathways. Therefore, our results indicate that DNase I may be an effective treatment for attenuating mastitis.


Assuntos
Desoxirribonuclease I/farmacologia , Mastite/tratamento farmacológico , Infecções Estafilocócicas/tratamento farmacológico , Animais , Desoxirribonuclease I/uso terapêutico , Feminino , Humanos , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Glândulas Mamárias Animais/irrigação sanguínea , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/microbiologia , Glândulas Mamárias Animais/patologia , Mastite/imunologia , Mastite/microbiologia , Mastite/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/imunologia
7.
Front Immunol ; 12: 696101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177964

RESUMO

Streptococcus uberis (S. uberis) is an important pathogen causing mastitis, which causes continuous inflammation and dysfunction of mammary glands and leads to enormous economic losses. Most research on infection continues to be microbial metabolism-centric, and many overlook the fact that pathogens require energy from host. Mouse is a common animal model for studying bovine mastitis. In this perspective, we uncover metabolic reprogramming during host immune responses is associated with infection-driven inflammation, particularly when caused by intracellular bacteria. Taurine, a metabolic regulator, has been shown to effectively ameliorate metabolic diseases. We evaluated the role of taurine in the metabolic regulation of S. uberis-induced mastitis. Metabolic profiling indicates that S. uberis exposure triggers inflammation and metabolic dysfunction of mammary glands and mammary epithelial cells (the main functional cells in mammary glands). Challenge with S. uberis upregulates glycolysis and oxidative phosphorylation in MECs. Pretreatment with taurine restores metabolic homeostasis, reverses metabolic dysfunction by decrease of lipid, amino acid and especially energy disturbance in the infectious context, and alleviates excessive inflammatory responses. These outcomes depend on taurine-mediated activation of the AMPK-mTOR pathway, which inhibits the over activation of inflammatory responses and alleviates cellular damage. Thus, metabolic homeostasis is essential for reducing inflammation. Metabolic modulation can be used as a prophylactic strategy against mastitis.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Streptococcus/patogenicidade , Taurina/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Feminino , Interações Hospedeiro-Patógeno , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite/imunologia , Mastite/metabolismo , Mastite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Células RAW 264.7 , Transdução de Sinais , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia , Streptococcus/imunologia , Serina-Treonina Quinases TOR/metabolismo
8.
Front Immunol ; 12: 782989, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35003099

RESUMO

Mastitis is one of the most serious diseases that causes losses in the dairy industry, seriously impairing milk production and milk quality, and even affecting human health. Menthol is a cyclic monoterpene compound obtained from the stem and leaves of peppermint, which has a variety of biological activities, including anti-inflammatory and antioxidant activity. The purpose of this study was to investigate the preventive effect of menthol on the lipopolysaccharide-induced inflammatory response in primary bovine mammary gland epithelial cells (BMECs) and its anti-inflammatory mechanism. First, BMECs were isolated and amplified from the udders of Holstein cows by enzymatic hydrolysis. BMECs were treated with menthol (10, 50, 100, 200 µM) for 1h, followed by lipopolysaccharide (5µg/ml) for 12 h. Lipopolysaccharide treatment upregulated the protein levels of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (INOS) and the mRNA abundance of tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), and interleukin-1ß (IL-1ß), while menthol was able to inhibit this effect. The inhibitory effect of menthol on proinflammatory factors was significantly reduced when autophagy was blocked using 3-Methyladenine (5µg/ml), an inhibitor of autophagy. Furthermore, lipopolysaccharide treatment reduced the expression levels of milk lipids and milk proteins, which were inhibited by menthol. In addition, menthol (200 µM) treatment was able to significantly upregulate the expression level of autophagy-related protein LC3B, downregulate the expression level of P62, promote the expression abundance of autophagy-related gene mRNA, and enhance significantly enhance autophagic flux. Interestingly, treatment of BMECs with menthol (200 µM) promoted the phosphorylation of AMP-activated protein kinase (AMPK) and unc-51 like kinase 1 (ULK1) and increased the nuclear localization of nuclear factor-E2 associated factor 2 (Nrf-2). When the AMPK pathway was blocked using compound C (10µg/ml), an inhibitor of AMPK, autophagy was significantly inhibited. Autophagy levels were significantly decreased after blocking the Nrf-2 pathway using ML385 (5µg/ml), an inhibitor of Nrf-2. Overall, the data suggest that menthol activates the AMPK-ULK1 pathway to initiate the onset of autophagy and maintains the level of autophagy through the AMPK-Nrf-2 pathway. In conclusion, the findings suggest that menthol may alleviate the inflammatory response in BMECs via the AMPK/ULK1/Nrf-2/autophagy pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Mastite/veterinária , Mentol/farmacologia , Proteínas do Leite/biossíntese , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Bovinos , Células Cultivadas , Indústria de Laticínios , Células Epiteliais , Gorduras/metabolismo , Feminino , Lipopolissacarídeos/imunologia , Glândulas Mamárias Animais/citologia , Mastite/tratamento farmacológico , Mastite/imunologia , Mentol/uso terapêutico , Leite/química , Leite/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia
9.
J Clin Pathol ; 74(8): 475-482, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33328182

RESUMO

Immunoglobulin G4-related sclerosing mastitis (IgG4-RM) is a recently recognised member of the IgG4-related disease (IgG4-RD) family, a multisystem fibroinflammatory condition that can affect any organ system. IgG4-RM is rare and predominantly occurs in middle-aged women. It may present with painless palpable mass and/or lymphadenopathy thereby mimicking breast cancer. Although there is an abundance of literature describing the clinicopathological characteristics of IgG4-RD in a variety of organs, data on IgG4-RM are limited due to its rarity. This review describes the manifestation of the disease in the breast based on reported cases, emphasising the clinicopathological features, pathophysiology, differential diagnosis, treatment and prognosis.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Doença Relacionada a Imunoglobulina G4/patologia , Mastite/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoimunidade , Mama/imunologia , Diagnóstico Diferencial , Feminino , Humanos , Doença Relacionada a Imunoglobulina G4/epidemiologia , Doença Relacionada a Imunoglobulina G4/imunologia , Doença Relacionada a Imunoglobulina G4/terapia , Masculino , Mastite/epidemiologia , Mastite/imunologia , Mastite/terapia , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Esclerose , Adulto Jovem
10.
Pesqui. vet. bras ; 41: e06862, 2021. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1346693

RESUMO

Mastitis causes significant economic losses to the dairy cattle industry. The present study aimed to evaluate the antibacterial properties of 39 heterocyclic derivatives (1,3-thiazoles and 4-thiazolidinones) against clinical mastitis isolates from dairy cows. Milk samples were collected from cows with clinical mastitis and the bacterial species were identified by PCR. Antibacterial activity was assessed using the broth microdilution method. First, 39 heterocyclic compounds were tested against four bacterial isolates (Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis and Escherichia coli) randomly chosen from those recovered from the milk samples (Study 1). Subsequently, the compounds with the strongest antibacterial activity were tested against all the bacterial isolates recovered from the milk samples (Study 2). 1,3-thiazoles showed the strongest antibacterial activity, specially compounds 30 and 38, which also showed bactericidal properties according to their minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values. Corynebacterium spp. and Enterobacteriaceae isolates were the most susceptible to compounds 30 and 38. Compounds 30 and 38 are promising targets for new antimicrobial agents.(AU)


A mastite causa significativas perdas econômicas à indústria leiteira bovina. O presente estudo teve como objetivo avaliar as propriedades antibacterianas de 39 derivados heterocíclicos (1,3-tiazóis e 4-tiazolidinonas) contra isolados clínicos de mastite em vacas leiteiras. Amostras de leite foram coletadas de vacas com mastite clínica e as espécies bacterianas isoladas foram identificadas por PCR. A atividade antibacteriana foi avaliada pelo método de microdiluição em caldo. Primeiramente, os 39 compostos heterocíclicos foram testados contra quatro isolados bacterianos (Staphylococcus aureus, Streptococcus agalactiae, Corynebacterium bovis e Escherichia coli) escolhidos aleatoriamente dentre os recuperados das amostras de leite (Estudo 1). Posteriormente, compostos com atividade antibacteriana mais forte foram testados contra todos os isolados bacterianos recuperados das amostras de leite (Estudo 2). Os compostos 1,3-tiazóis apresentaram a maior atividade antibacteriana, principalmente os compostos 30 e 38, que também apresentaram propriedades bactericidas de acordo com seus valores de concentração inibitória mínima (CIM) e concentração bactericida mínima (CBM). Os isolados Corynebacterium spp. e Enterobacteriaceae foram os mais suscetíveis aos compostos 30 e 38. Os compostos 30 e 38 mostraram-se promissores como novos agentes antimicrobianos.(AU)


Assuntos
Animais , Bovinos , Tiazóis/administração & dosagem , Mastite/imunologia , Antibacterianos , Staphylococcus aureus , Streptococcus agalactiae , Bovinos/microbiologia
11.
Sci Rep ; 10(1): 18521, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116172

RESUMO

Sub-acute mastitis (SAM) is a prevalent disease among lactating women, being one of the main reasons for early weaning. Although the etiology and diagnosis of acute mastitis (AM) is well established, little is known about the underlying mechanisms causing SAM. We collected human milk samples from healthy and SAM-suffering mothers, during the course of mastitis and after symptoms disappeared. Total (DNA-based) and active (RNA-based) microbiota were analysed by 16S rRNA gene sequencing and qPCR. Furthermore, mammary epithelial cell lines were exposed to milk pellets, and levels of the pro-inflammatory interleukin IL8 were measured. Bacterial load was significantly higher in the mastitis samples and decreased after clinical symptoms disappeared. Bacterial diversity was lower in SAM milk samples, and differences in bacterial composition and activity were also found. Contrary to AM, the same bacterial species were found in samples from healthy and SAM mothers, although at different proportions, indicating a dysbiotic ecological shift. Finally, mammary epithelial cell exposure to SAM milk pellets showed an over-production of IL8. Our work therefore supports that SAM has a bacterial origin, with increased bacterial loads, reduced diversity and altered composition, which partly recovered after treatment, suggesting a polymicrobial and variable etiology.


Assuntos
Mastite/microbiologia , Leite Humano/microbiologia , Bactérias/genética , Aleitamento Materno , Feminino , Humanos , Inflamação/metabolismo , Lactação/metabolismo , Mastite/imunologia , Mastite/fisiopatologia , Microbiota/genética , Leite Humano/química , RNA Ribossômico 16S/genética
12.
Int Immunopharmacol ; 86: 106697, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32585608

RESUMO

Mastitis is one of the most common diseases among dairy cows. There is still much debate worldwide as to whether antibiotic therapy should be given to dairy cows, or if natural products should be taken as a substitute for antibacterial therapy. As the antibiotic treatment leads to the bacterial resistance and drug residue in milk, introducing natural products for mastitis is becoming a trend. This study investigates the mechanisms of the protective effects of the natural product gambogic acid (GA) in lipopolysaccharide (LPS)-induced mastitis. For in vitro treatments, it was found that GA reduced IL-6, TNF-α, and IL-1ß levels by inhibiting the phosphorylation of proteins in the nuclear factor κB (NF-κB) and the mitogen-activated protein kinase (MAPK) pathway. GA also maintained a stable membrane mitochondrial potential and inhibited the overproduction of reactive oxygen species, which protected the cells from apoptosis. On the other hand, in vivo treatments with GA were found to reduce pathological symptoms markedly, and protected the blood-milk barrier from damage induced by LPS. The results demonstrate that GA plays a vital role in suppressing inflammation, alleviating the apoptosis effect, and protecting the blood-milk barrier in mastitis induced by LPS. Thus, these results suggest that the natural product GA plays a potential role in mastitis treatment.


Assuntos
Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Glândulas Mamárias Animais/efeitos dos fármacos , Mastite/tratamento farmacológico , Xantonas/farmacologia , Animais , Anti-Inflamatórios/uso terapêutico , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Inflamação/tratamento farmacológico , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/ultraestrutura , Mastite/induzido quimicamente , Mastite/imunologia , Mastite/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Subunidade p50 de NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Gravidez , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Xantonas/uso terapêutico
13.
Int Immunopharmacol ; 83: 106493, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289739

RESUMO

Lactational mastitis seriously alters the normal physiological function of mammary gland and activates the innate immune. Mammary epithelial cells (MECs) secret cytokines and regulate the function of immune system. However, the mechanism MECs mediated crosstalk with immune cells, such as macrophages, during mastitis is unclear. In this study, mouse mammary epithelial cells (HC11), treated with Lipoteichoic acid (LTA), and macrophages (RAW264.7) were used to mimic intercellular communication. Our results showed that exosomal miR-221 level was up-regulated and reached the peak at 12 h after infected by LTA. The expression of miR-211, CD11b protein and TNF-α mRNA were upregulated and the expression of CD206 protein and Arg-1 mRNA were inhibited in RAW264.7 treated with exosomes. In addition, miR-221 mimics and inhibitors enhanced and depressed HC11-derived exosomal miR-221 level, respectively. After treatment of Exo(mimic) in RAW264.7, the expression of CD11b protein and TNF-α mRNA were up-regulated, the expression of CD206 and Arg-1 mRNA were down-regulated. Additionally, Exo(inhibitor) enhanced CD206 protein and Arg-1 mRNA levels and inhibited CD11b protein and TNF-α mRNA levels. Furthermore, SOCS1 was identified to be a target gene of miR-221 by using Luciferase assays. And western blot assays showed that the expression of p-STAT1 and p-STAT3 were elevated and repressed, respectively. Taken together, we suggest that exosomal miR-221 promotes polarization of M1 macrophages via SOCS1, STAT1 and STAT3. And we reveal a novel crosstalk signaling pathway between mammary epithelial cells and macrophages in the process of inflammation.


Assuntos
Células Epiteliais/fisiologia , Inflamação/imunologia , Macrófagos/imunologia , Glândulas Mamárias Animais/patologia , Mastite/imunologia , MicroRNAs/genética , Animais , Diferenciação Celular , Citocinas/metabolismo , Exossomos/metabolismo , Feminino , Humanos , Camundongos , MicroRNAs/metabolismo , Células RAW 264.7 , Fatores de Transcrição STAT/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Células Th1/imunologia
14.
Int Immunopharmacol ; 81: 106025, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31810886

RESUMO

Plasma cell mastitis (PCM) is a special form of mastitis characterized by periductal inflammation and large-scale plasma cell infiltration. At present, the recurrence rate of PCM after excision is quite high, making PCM a major problem for mammary surgeons. However, no effective drug exists for the treatment of PCM. Numerous studies have demonstrated that Sinomenine hydrochloride (SH) has potent anti-inflammatory and immunoregulatory properties. However, the efficacy and the underlying mechanisms of SH in the treatment of PCM remain unclear. In the present study, we first investigated the therapeutic effects of SH in the PCM mouse model and clarified the possible mechanisms. We found that the levels of plasmocytes and lymphocytes infiltration were alleviated significantly in the 100 mg/kg SH group compared to the control group. In addition, few CD138+ plasma cells were found in the mammary glands of the 100 mg/kg SH group. The levels of Bcl-2 in the 100 mg/kg SH group were dramatically decreased compared with those in the saline group. Mechanistically, we demonstrated that SH inhibited the progression of PCM mainly through downregulating IL-6/JAK2/STAT3 levels. Collectively, our results suggested that SH could inhibit the progression of PCM by suppressing IL-6/JAK2/STAT3 cascades and ultimately achieve a therapeutic effect in PCM. This study provides theoretical support for the clinical application of SH in the treatment of PCM.


Assuntos
Anti-Inflamatórios/farmacologia , Mastite/tratamento farmacológico , Morfinanos/farmacologia , Plasmócitos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/uso terapêutico , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Interleucina-6/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/patologia , Mastite/imunologia , Mastite/patologia , Camundongos , Morfinanos/uso terapêutico , Plasmócitos/imunologia , Plasmócitos/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Tirfostinas/administração & dosagem
15.
Food Funct ; 10(10): 6543-6555, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31545328

RESUMO

Mastitis, a major disease affecting dairy cows, is most commonly caused by Staphylococcus aureus (S. aureus). Selenium (Se) can activate pivotal proteins in immune responses and regulate the immune system, and microRNA-155 (miR-155) is a key transcriptional regulator for inflammation-related diseases. We constructed the model of mouse mastitis in vivo and primary mouse mammary epithelial cells (MMECs) in vitro, which were induced by S. aureus. Se content of the mammary was estimated using an atomic fluorescence spectrophotometer. Histopathological analysis was performed via hematoxylin and eosin (H&E) staining. The mmu-miR-155-5p mimic was transfected in MMECs, and viability was determined through the MTT assay. Transfected efficiency was evaluated by qPCR and fluorescence staining. Cytokines including TNF-α, IL-1ß, IL-10 and TLRs were detected with qPCR. In addition, western blotting was used to evaluate the expression of the NF-κB and MAPKs signaling pathways. The results demonstrated that a Se-supplemented diet improved the content of Se in mammary tissues. Histopathological studies indicated that the mammary glands were protected in the Se-supplemented group after S. aureus infection. Se-supplementation suppressed the production of MPO, mmu-miR-155, TNF-α, IL-1ß, and TLR2 and significantly inhibited the phosphorylation of NF-κB and MAPKs in vivo and in vitro. All the data indicated that mmu-miR-155 played a pro-inflammatory role in our study, and Se-supplementation could suppress the expression of mmu-miR-155 to inhibit inflammation in S. aureus-induced mastitis in mice.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Mastite/tratamento farmacológico , MicroRNAs/genética , Selênio/administração & dosagem , Infecções Estafilocócicas/veterinária , Animais , Bovinos , Doenças dos Bovinos/genética , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Citocinas/genética , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica , Mastite/genética , Mastite/imunologia , Mastite/microbiologia , Camundongos , MicroRNAs/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia
16.
Am J Surg Pathol ; 43(12): 1653-1660, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436555

RESUMO

Rosai-Dorfman disease (RDD) is an uncommon disorder, characterized by an atypical expansion of histiocytes which classically shows emperipolesis and immunoreactivity with S-100 protein. RDD affects the lymph nodes as well as extranodal sites; however, RDD of the breast is exceptionally rare. Herein, we describe the histopathologic features of 22 cases of RDD occurring in the breast, with an emphasis on the differential diagnosis. All cases were notable for an exuberant lymphocytic infiltrate with and without germinal center formation, and the majority (19/22) showed numerous plasma cells: 5 to 132/high-power field (HPF). IgG and IgG4 immunohistochemical stains were available for 13 cases; in no instance were criteria for IgG4-related sclerosing disease met, though in a single case the IgG4/IgG ratio was increased to 25%. Sclerosis was present in the majority of cases (18/22), and was frequently prominent. RDD cells showing emperipolesis were present in all cases (22/22), and ranged from rare (<1/50 HPF) to numerous (>50/50 HPF). Two of the cases in our series were initially misdiagnosed as inflammatory myofibroblastic tumor and plasma cell mastitis with granulomatous inflammation. As emperipolesis can be indistinct, the presence of stromal fibrosis and a prominent lymphoplasmacytic inflammatory infiltrate should prompt a careful search for the characteristic histiocytes, which can be aided by the use of S-100 immunohistochemistry.


Assuntos
Doenças Mamárias/imunologia , Mama/imunologia , Histiocitose Sinusal/imunologia , Imunoglobulina G/análise , Neoplasias Inflamatórias Mamárias/imunologia , Mastite/imunologia , Plasmócitos/imunologia , Adolescente , Adulto , Idoso , Mama/química , Mama/patologia , Doenças Mamárias/metabolismo , Doenças Mamárias/patologia , Diagnóstico Diferencial , Emperipolese , Feminino , Fibrose , Histiocitose Sinusal/metabolismo , Histiocitose Sinusal/patologia , Humanos , Neoplasias Inflamatórias Mamárias/química , Neoplasias Inflamatórias Mamárias/patologia , Mastite/metabolismo , Mastite/patologia , Pessoa de Meia-Idade , Plasmócitos/química , Plasmócitos/patologia , Prognóstico , Proteínas S100/análise , Estados Unidos , Adulto Jovem
17.
BMC Genomics ; 20(1): 623, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366318

RESUMO

BACKGROUND: Epigenetic changes such as cytosine (CpG) DNA methylations regulate gene expression patterns in response to environmental cues including infections. Microbial infections induce DNA methylations that play a potential role in modulating host-immune response. In the present study, we sought to determine DNA methylation changes induced by the mastitis causing Escherichia coli (E. coli) in porcine mammary epithelial cells (PMEC). Two time points (3 h and 24 h) were selected based on specific transcriptomic changes during the early and late immune responses, respectively. RESULTS: DNA methylation analysis revealed 561 and 898 significant (P < 0.01) differentially methylated CpG sites at 3 h and 24 h after E. coli challenge in PMEC respectively. These CpG sites mapped to genes that have functional roles in innate and adaptive immune responses. Significantly, hypomethylated CpG sites were found in the promoter regions of immune response genes such as SDF4, SRXN1, CSF1 and CXCL14. The quantitative transcript estimation indicated higher expression associated with the DNA CpG methylation observed in these immune response genes. Further, E. coli challenge significantly reduced the expression levels of DNMT3a, a subtype of de novo DNA methylation enzyme, in PMEC indicating the probable reason for the hypomethylation observed in the immune response genes. CONCLUSIONS: Our study revealed E. coli infection induced DNA methylation loci in the porcine genome. The differentially methylated CpGs were identified in the regulatory regions of genes that play important role in immune response. These results will help to understand epigenetic mechanisms for immune regulation during coliform mastitis in pigs.


Assuntos
Metilação de DNA/imunologia , Escherichia coli/fisiologia , Loci Gênicos/genética , Glândulas Mamárias Animais/imunologia , Glândulas Mamárias Animais/metabolismo , Animais , Epigenômica , Feminino , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/microbiologia , Mastite/genética , Mastite/imunologia , Mastite/microbiologia , Suínos
18.
Comp Immunol Microbiol Infect Dis ; 66: 101339, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31437679

RESUMO

IL-1R8 is a member of Interleukin-1 receptor family acting as a negative regulator of inflammation reliant on ILRs and TLRs activation. IL-1R8 role has never been evaluated in acute bacterial mastitis. We first investigated IL-1R8 sequence conservation among different species and its pattern of expression in a wide panel of organs from healthy goats. Then, modulation of IL-1R8 during natural and experimental mammary infection was evaluated and compared in blood, milk and mammary tissues from healthy and Staphylococcus aureus infected goats. IL-1R8 has a highly conserved sequence among vertebrates. Goat IL-1R8 was ubiquitously expressed in epithelial and lymphoid tissues with highest levels in pancreas. IL-1R8 was down-regulated in epithelial mammary cells following S. aureus infection. Interestingly it was up-regulated in leukocytes infiltrating the infected mammary tissues suggesting that it could represent a target of S. aureus immune evasion.


Assuntos
Doenças das Cabras/imunologia , Imunidade Inata , Glândulas Mamárias Animais/microbiologia , Mastite/veterinária , Receptores de Interleucina-8/genética , Infecções Estafilocócicas/imunologia , Animais , Regulação para Baixo , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Feminino , Doenças das Cabras/microbiologia , Cabras/microbiologia , Inflamação , Glândulas Mamárias Animais/imunologia , Mastite/imunologia , Mastite/microbiologia , Receptores de Interleucina-8/sangue , Staphylococcus aureus/imunologia , Regulação para Cima
19.
J Interferon Cytokine Res ; 39(9): 577-584, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31313943

RESUMO

Mastitis has been recognized as a common and major disease of cows with a strong impact on dairy farming. Interleukin-17A (IL-17A) has been shown to mediate crucial crosstalk between the immune system and various epithelial tissues, initiating a series of defensive mechanisms against bacterial and fungal infections. This crosstalk is especially involved in neutrophil infiltration. To evaluate the role of IL-17A in immune defense in the mammary gland in mice, we tested the effects of depleting IL-17A on changes in pathology, neutrophil infiltration, and pro-inflammatory cytokine levels in the mammary gland stimulated by lipopolysaccharide (LPS). Further, the effects of IL-17A on the activation of the nuclear factor-κB (NF-κB) signaling pathway during mastitis induced by LPS were also studied. The results showed that the production of IL-17A was significantly elevated during mastitis induced by LPS. IL-17A blockade via an intraperitoneal antibody injection protected against LPS-induced mastitis, as indicated by decreased neutrophil infiltration, myeloperoxidase activity, pro-inflammatory cytokines levels, and NF-κB signaling pathway molecule phosphorylation in response to LPS. In conclusion, an elevated IL-17 level plays a crucial role during mastitis, and anti-IL-17A antibody blockade protects against LPS-induced mammary gland inflammation induced through the NF-κB signaling pathway, which provides a new potential treatment target for mastitis.


Assuntos
Inflamação/tratamento farmacológico , Interleucina-17/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Mastite/imunologia , Infiltração de Neutrófilos/efeitos dos fármacos , Animais , Feminino , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Mastite/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos/imunologia
20.
Breast J ; 25(6): 1251-1253, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31280490

RESUMO

Recently, it has been reported that IgG4-related disease may occur in the breast manifesting as nodular sclerosing interstitial mastitis. Here we report a case with multiple tumor-like nodules in one breast. The histologic diagnosis was established on core needle biopsies, and treatment was initiated without open biopsy. Diagnosis of IgG4-related sclerosing mastitis should be suspected in cases of tumor-like lesions on imaging with an interstitial plasma cell-rich sclerosing inflammation on histology.


Assuntos
Biópsia com Agulha de Grande Calibre/métodos , Mama , Mastite/patologia , Plasmócitos , Mama/diagnóstico por imagem , Mama/patologia , Neoplasias da Mama/diagnóstico , Diagnóstico Diferencial , Feminino , Humanos , Biópsia Guiada por Imagem/métodos , Doença Relacionada a Imunoglobulina G4/diagnóstico , Doença Relacionada a Imunoglobulina G4/patologia , Doença Relacionada a Imunoglobulina G4/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Mamografia/métodos , Mastite/imunologia , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/patologia , Esclerose , Ultrassonografia de Intervenção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...